Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting.
نویسندگان
چکیده
Poly(dimethylsiloxane) (PDMS)-based microfluidic devices are increasing in popularity due to their ease of fabrication and low costs. Despite this, there is a tremendous need for strategies to rapidly and easily tailor the surface properties of these devices. We demonstrate a one-step procedure to covalently link polymers to the surface of PDMS microchannels by ultraviolet graft polymerization. Acrylic acid, acrylamide, dimethylacrylamide, 2-hydroxylethyl acrylate, and poly(ethylene glycol)monomethoxyl acrylate were grafted onto PDMS to yield hydrophilic surfaces. Water droplets possessed contact angles as low as 45 degrees on the grafted surfaces. Microchannels constructed from the grafted PDMS were readily filled with aqueous solutions in contrast to devices composed of native PDMS. The grafted surfaces also displayed a substantially reduced adsorption of two test peptides compared to that of oxidized PDMS. Microchannels with grafted surfaces exhibited electroosmotic mobilities intermediate to those displayed by native and oxidized PDMS. Unlike the electroosmotic mobility of oxidized PDMS, the electroosmotic mobility of the grafted surfaces remained stable upon exposure to air. The electrophoretic resolution of two test peptides in the grafted microchannels was considerably improved compared to that in microchannels composed of oxidized PDMS. By using the appropriate monomer, it should be possible to use UV grafting to impart a variety of surface properties to PDMS microfluidics devices.
منابع مشابه
Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices
Fast advancements of microfabrication processes in past two decades have reached to a fairly matured stage that we can manufacture a wide range of microfluidic devices. At present, the main challenge is the control of nanoscale properties on the surface of lab-on-a-chip to satisfy the need for biomedical applications. For example, poly(dimethylsiloxane) (PDMS) is a commonly used material for mi...
متن کاملA 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.
In this work, we demonstrate the immunocapture and on-line fluorescence immunoassay of protein and virus based on porous polymer monoliths (PPM) in microfluidic devices. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] monoliths were successfully synthesized in the polydimethylsiloxane (PDMS) microfluidic channels by in situ UV-initiated free radical polymeriza...
متن کاملThree-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
This technical note presents a fabrication method and applications of three-dimensional (3D) interconnected microporous poly(dimethylsiloxane) (PDMS) microfluidic devices. Based on soft lithography, the microporous PDMS microfluidic devices were fabricated by molding a mixture of PDMS pre-polymer and sugar particles in a microstructured mold. After curing and demolding, the sugar particles were...
متن کاملKinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy.
In numerous applications in microfluidics, cell growth, soft lithography, and molecular imprinting, the surface of poly(dimethylsiloxane) (PDMS) is modified from a hydrophobic methyl-terminated surface to a hydrophilic hydroxyl-terminated surface. In this study, we investigated molecular structural and orientational changes at the PDMS-air interface in response to three commonly used surface mo...
متن کاملFabrication of a poly(dimethylsiloxane) membrane with well-defined through-holes for three-dimensional microfluidic networks
We report a simple method for the fabrication of a poly(dimethylsiloxane) (PDMS) membrane with through-holes by blowing a residual prepolymer away from a photoresist (PR)-patterned Si wafer. The fabrication method for the perforated polymer membrane is crucial to achieve both complicated three-dimensional microfluidic devices and polymer sieve sheets. This method has several advantages over the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 74 16 شماره
صفحات -
تاریخ انتشار 2002